summaryrefslogtreecommitdiff
path: root/src/js/int64.js
diff options
context:
space:
mode:
authorspv420 <unomilliono@gmail.com>2022-04-23 18:22:31 -0400
committerspv420 <unomilliono@gmail.com>2022-04-23 18:22:31 -0400
commit245a3831d7266913b0281bfa19058b59ac80818b (patch)
treed20043b79a8df535a7df9b1d19c249e6ebd2d5a1 /src/js/int64.js
parent8526f9689b7bbeb09a14fbd159ef6d1871909df4 (diff)
big b0i
Diffstat (limited to 'src/js/int64.js')
-rw-r--r--src/js/int64.js169
1 files changed, 169 insertions, 0 deletions
diff --git a/src/js/int64.js b/src/js/int64.js
new file mode 100644
index 0000000..1ef5910
--- /dev/null
+++ b/src/js/int64.js
@@ -0,0 +1,169 @@
+//
+// Tiny module that provides big (64bit) integers.
+//
+// Copyright (c) 2016 Samuel Groß
+//
+// Requires utils.js
+//
+
+// Datatype to represent 64-bit integers.
+//
+// Internally, the integer is stored as a Uint8Array in little endian byte order.
+function Int64(v) {
+ // The underlying byte array.
+ var bytes = new Uint8Array(8);
+
+ switch (typeof v) {
+ case 'number':
+ v = '0x' + Math.floor(v).toString(16);
+ case 'string':
+ if (v.startsWith('0x'))
+ v = v.substr(2);
+ if (v.length % 2 == 1)
+ v = '0' + v;
+
+ var bigEndian = unhexlify(v, 8);
+ bytes.set(Array.from(bigEndian).reverse());
+ break;
+ case 'object':
+ if (v instanceof Int64) {
+ bytes.set(v.bytes());
+ } else {
+ if (v.length != 8)
+ throw TypeError("Array must have excactly 8 elements.");
+ bytes.set(v);
+ }
+ break;
+ case 'undefined':
+ break;
+ default:
+ throw TypeError("Int64 constructor requires an argument.");
+ }
+
+ // Return a double whith the same underlying bit representation.
+ this.asDouble = function() {
+ // Check for NaN
+ if (bytes[7] == 0xff && (bytes[6] == 0xff || bytes[6] == 0xfe))
+ throw new RangeError("Integer can not be represented by a double");
+
+ return Struct.unpack(Struct.float64, bytes);
+ };
+
+ // Return a javascript value with the same underlying bit representation.
+ // This is only possible for integers in the range [0x0001000000000000, 0xffff000000000000)
+ // due to double conversion constraints.
+ this.asJSValue = function() {
+ if ((bytes[7] == 0 && bytes[6] == 0) || (bytes[7] == 0xff && bytes[6] == 0xff))
+ throw new RangeError("Integer can not be represented by a JSValue");
+
+ // For NaN-boxing, JSC adds 2^48 to a double value's bit pattern.
+ this.assignSub(this, 0x1000000000000);
+ var res = Struct.unpack(Struct.float64, bytes);
+ this.assignAdd(this, 0x1000000000000);
+
+ return res;
+ };
+
+ // Return the underlying bytes of this number as array.
+ this.bytes = function() {
+ return Array.from(bytes);
+ };
+
+ // Return the byte at the given index.
+ this.byteAt = function(i) {
+ return bytes[i];
+ };
+
+ // Return the value of this number as unsigned hex string.
+ this.toString = function() {
+ return '0x' + hexlify(Array.from(bytes).reverse());
+ };
+
+ // Basic arithmetic.
+ // These functions assign the result of the computation to their 'this' object.
+
+ // Decorator for Int64 instance operations. Takes care
+ // of converting arguments to Int64 instances if required.
+ function operation(f, nargs) {
+ return function() {
+ if (arguments.length != nargs)
+ throw Error("Not enough arguments for function " + f.name);
+ for (var i = 0; i < arguments.length; i++)
+ if (!(arguments[i] instanceof Int64))
+ arguments[i] = new Int64(arguments[i]);
+ return f.apply(this, arguments);
+ };
+ }
+
+ // this = -n (two's complement)
+ this.assignNeg = operation(function neg(n) {
+ for (var i = 0; i < 8; i++)
+ bytes[i] = ~n.byteAt(i);
+
+ return this.assignAdd(this, Int64.One);
+ }, 1);
+
+ // this = a + b
+ this.assignAdd = operation(function add(a, b) {
+ var carry = 0;
+ for (var i = 0; i < 8; i++) {
+ var cur = a.byteAt(i) + b.byteAt(i) + carry;
+ carry = cur > 0xff | 0;
+ bytes[i] = cur;
+ }
+ return this;
+ }, 2);
+
+ // this = a - b
+ this.assignSub = operation(function sub(a, b) {
+ var carry = 0;
+ for (var i = 0; i < 8; i++) {
+ var cur = a.byteAt(i) - b.byteAt(i) - carry;
+ carry = cur < 0 | 0;
+ bytes[i] = cur;
+ }
+ return this;
+ }, 2);
+
+ // this = a ^ b
+ this.assignXor = operation(function sub(a, b) {
+ for (var i = 0; i < 8; i++) {
+ bytes[i] = a.byteAt(i) ^ b.byteAt(i);
+ }
+ return this;
+ }, 2);
+}
+
+// Constructs a new Int64 instance with the same bit representation as the provided double.
+Int64.fromDouble = function(d) {
+ var bytes = Struct.pack(Struct.float64, d);
+ return new Int64(bytes);
+};
+
+// Convenience functions. These allocate a new Int64 to hold the result.
+
+// Return -n (two's complement)
+function Neg(n) {
+ return (new Int64()).assignNeg(n);
+}
+
+// Return a + b
+function Add(a, b) {
+ return (new Int64()).assignAdd(a, b);
+}
+
+// Return a - b
+function Sub(a, b) {
+ return (new Int64()).assignSub(a, b);
+}
+
+// Return a ^ b
+function Xor(a, b) {
+ return (new Int64()).assignXor(a, b);
+}
+
+// Some commonly used numbers.
+Int64.Zero = new Int64(0);
+Int64.One = new Int64(1);
+
+// That's all the arithmetic we need for exploiting WebKit.. :)